

Due to policy statements and strong public opinion trends, major automakers have committed over USD\$300B towards actively developing battery electric vehicles

MINERAL

INTELLIGENCE

As a result, lithium-ion manufacturers are ramping up >2TWh capacity from 121 battery "megafactories", the majority of which are expected in China

China will continue to dominate cell manufacturing with demand for European and US made cells out-stripping supply. This is especially the case for Tier 1 producers who may only have limited volumes available outside the large OEMs

This significant global battery cell capacity ramp-up will compound the continuing decline of \$/kWh battery cost of production

2014 is the year when meticulous cell price tracking across the industry was instituted

Cell-level cost reductions mostly concentrated on:

- Cost management along materials supply chain (largest opportunity)
- Manufacturing efficiency improvements and large-scale production
 - Yield loss improvements during manufacturing process

Pack-level cost reductions result from:

- Improved energy density of individual cells from chemistry evolution
- Improved cell density within packs from less volumetric intensity of interstitial materials

Cathode materials are the largest \$/kWh cost, and is the focus of cost reduction through materials management and manufacturing efficiency improvements

- Cathode is >50% of the total cost of producing battery cells
- Cost control is pushing innovation and push to new chemistries
- Depending on raw materials prices, 3 key metals contribute ~50-65% of cathode manufacturing cost
 - Lithium
 - Nickel
 - Cobalt
- Short of vertical integration, supply chain optionality and security is key to realizing cost-downs in these materials

6 key trends shaping the lithium-ion battery cell industry

Market Trend #1 – While higher tier battery producers are preferred by Western automotive, lower tier battery suppliers will try to "level up"

- Higher likelihood of being used in Western automotive
- Longer supplier qualification timelines
- Higher material quality requirements
- More stringent spec tolerances
- Larger qualification sample requirements

But, does not necessarily mean:

- Trends in China are the same
- More innovative
- Better position to raise capital
- First choice for Western automotive in perpetuity

Product quality differentiation is the main reason that battery cells will not become "commoditized" like solar panels

Market Trend #2 - Nickel-rich cathode chemistries expected to capture larger market share as customers push for higher energy density, but LFP is a "dark horse"

Market Trend #3 - Long-term, as industry shifts towards autonomous driving and EVs penetrate new geographies, cathode chemistries will differentiate by application

Market Trend #4 - China dominates capacity in the upstream cathode and materials supply chain, and expected to continue to do so at least for the next decade

Market Trend #5 – Western markets' EV demand and governments' push towards new job creation in advanced industries creates capacity co-location opportunities

From - Globally Distributed Supply Chain

To - Vertically Integrated For Cost Optimization

General product flow towards Asia

General product flow towards end markets

Market Trend #6 – The dislocation in timeline to build each portion of the supply chain could lead to multiple battery material shortages

6 key trends shaping the lithium-ion battery cell industry

Deep Dive on Lithium Chemicals Industry

Lithium is plentifully available today from a geology standpoint...

... but supply remains highly concentrated within a small number of regions...

... with a small number of Tier 1 suppliers supplying the Western battery industry

Brine and spodumene are the two most prolific sources of material today, although specific forms of clay have potential to enter the supply chain in the future

Carbonate and hydroxide, the two most common forms of lithium chemicals used for battery manufacturing today, mildly differ in price

Carbonate

- >60% of the produced and consumed lithium chemicals today
- Expected to make-up a meaningful part of the market in the long-term

Hydroxide

 Fastest growing segment due to shift due to shift towards higher nickel chemistries

Given the growth in the industry, supply chain players have exercised creativity in structuring new business models to feed material into this evolving supply chain

EXAMPLE - Supply chain of spodumene material from Sigma Lithium in Brazil to a Western automaker

Cell Maker

Western EV Manufacturer

- Sigma is ramping up 660k TPT spodumene production in Brazil
- Secured \$30m pre-payment from Mitsui, who are responsible to ship spodumene from Brazil for production in China to lithium chemicals ultimately bound for Western automotive batteries
- Mitsui plays central role in piecing together the supply chain here

However, projected severe shortages of lithium chemicals still plague the industry, which begs the question – why aren't more people investing?

- The demand outlook for lithium is undoubted, the speed and rate of demand growth is the major question
- Entering a period of transition with new supplies beginning ahead of the roll out of megafactory capacity
- Major supply expansions still required to reach demand requirements of 2021 onwards
- The slow introduction of new projects into the market is a warning sign for a market which is only in the early stages of its growth cycle

Reason #1 - Value chain is concerned about price volatility; after decades of stability, lithium prices have gone through a boom/bust cycle in just 6 years

Reason #2 - Regardless of price swings the lowest cost producer is best position for value creation, and these projects are becoming harder to find and develop

Reason #3 – Even if a project is developed, it has to be "qualified" for battery-grade supply before a large supply contract can commence

Qualification - the auditing process to ensure that material is <u>fit for purpose</u> before commercial supply commences

Concerns for OEMs

- OEMs must qualify large quantities of new suppliers to create effectively large pool of available material to source
- Risk of qualification failure is high with new suppliers

Reason #4 – Against a backdrop of rising ESG concerns in mining investing, the environmental footprint of this supply chain has faced tough scrutiny

Reason #5 – Stalled innovation in the flow sheet for lithium chemicals production reinforces questions about environmental sustainability and value creation

- High electricity costs from high temperature baking of ore and electrodialysis of leach liquor
- High operations/labor cost from ore mining and material transport
- High lime slurry costs to neutralize acid addition and to promote impurity precipitation
- Low byproduct revenue

5 reasons that lithium supply growth is projected to fall behind demand

Growing the battery recycling industry

Industry's concerns about severe materials shortage, geopolitical risk, and governance has led them to seek alternatives to traditional mining/chemicals

Batteries sent to raw material recycling centers expected to grow nearly 4x by 2025, and in response multiple companies are pursuing capacity build-ups

BMW/Northvolt/Umicore deal an example of European pan-industry collaboration on closed loop sustainable battery materials supply chain; more deals expected

Umicore
Cathode manufacturer / Recycling

Northvolt Cell manufacturer

BMW EV manufacturer

- Project aims to create a "closed life cycle loop" for battery cells
- Cells will be manufactured using a recyclable design and used in electric vehicles, then possibly as stationary storage devices before finally being recycled and reused

Attractive project economics featuring a payback <1 year at demo plant scale, but sensitive to continuous process cost improvement and chemicals market prices

NCA demonstration plant project economics

Market Price (USD/kg)

	mantet i iiee (e e z i iig)
Lithium Carbonate	\$17.00
Cobalt	\$79.00
Nickel	\$14.70
Manganese	\$2.03
Aluminium	\$2.20
Battery Chemistry	NCA
Lithium Carbonate (kg)	1,154
Cobalt (kg)	276
Nickel (kg)	1,466
Manganese (kg)	0
Aluminium (kg)	42
Total Annual Revenue	\$23.02 M
Annual Operating Expenses	
Reagents	\$1.07 M
Labour and G&A	\$3.26 M
Utilities	\$0.13 M
Feed Material Delivered	\$2.3 M
Maintenance	\$0.53 M

Metal

Building Rent

Shipping & Packaging

Annual Operating Profit

Operating Margin

Total Annual Operating Expense

Interest Rate	10%	
Period	Cashflow	Balance
Year 0	\$ (10.0)M	\$ (10.0)M
Year 1	\$ 14.9 M	\$ 4.9 M
Year 2	\$ 14.9 M	\$ 19.7 M
Year 3	\$ 14.9 M	\$ 34.6 M
NPV	Payback	IRR
\$26.97 M	0.68 Years	138%
	IPV by Change in Assumption (NCA B	
		2.0 M \$4.0 M \$6.0 M \$8.0 M
\$ (8.0)r		
\$ (8.0)r OPEX (-/+ 30%)		
\$ (8.0)r OPEX (-/+ 30%) Cobalt Price (-/+ 30%)		
\$ (8.0)r OPEX (-/+ 30%) Cobalt Price (-/+ 30%) Nickel Price (-/+ 30%)		
\$ (8.0)r OPEX (-/+ 30%) Cobalt Price (-/+ 30%) Nickel Price (-/+ 30%) Lithium Price (-/+ 30%)		
\$ (8.0)r OPEX (-/+ 30%) Cobalt Price (-/+ 30%) Nickel Price (-/+ 30%) Lithium Price (-/+ 30%) CAPEX (-/+ 30%)		

- Variability
 potentially
 introduced with
 changing
 perceptions of
 feed material
 value
- Potential premium due to low-carbon and closed-loop material could guarantee higher prices

\$0.18 M

\$0.68 M

\$8.15 M

\$14.87 M

65%

The recycling industry is in nascent stages, and faces multiple threats to reach full scale and profitability as global lithium-ion battery capacity ramps up

OEMs and battery manufacturers are looking at opportunities to recycle used lithium-ion batteries and scrap to create a closed loop battery supply chain

Main advantages of battery recycling

- Lower CO2 footprint supply chain
- Decreased geopolitical and logistics risk
- Fulfills regulatory mandates
- More likely to be attractive to customers
- Reduces \$/kWh battery costs

The battery industry is fundamental to the race for clean air worldwide, and requires innovative new solutions in this time of unprecedented change

Reach out with any questions, and download presentation

vivas@benchmarkminerals.com

